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ABSTRACT
/
Aigl/ By using conjugate directions a method for solving convex quadratic

programming problems is developed. The algorithm generates a sequence of dual

feasible solutions and terminates after a finite number of steps. 72
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SIGNIFICANCE AND EXPLANATION

The quadratic programming problem is the following: Given n x 1
vectors c,aq,ese,ap, numbers b.‘,...,bm and an n x n matrix C, find
an n x 1 vector x which minimizes the quadratic function

c'x + 1 x'Cx ,
2
subject to the inequality constraints
aix < bi’ i=1,0e,m.
If C is the n x n zero matrix, then the quadratic programming problem
reduces to the linear programming problem.

In recent years quadratic programming has become an important tool in
optimization. It has wide applications in areas such as statistics,
structural engineering, economics and portfolio analysis.

In applications the following situation occurs frequently: A quadratic
programming problem has been formulated and an optimal solution x has been
obtained. Then it 1s discovered that additional constraints are required
which render the previous optimal solution x unfeasible. The contribution
of this work is an algorithm which solves the new problem in an efficient way
by taking advantage of the fact that an optimal solution x to the "wrong"

problem is known.
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A The responsibility for the wording and views expregsed in this descriptive
Q}? summary lies with MRC, and not with the author of this report.
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A DUAL QUADRATIC PROGRAMMING ALGORITHM

Klaus Ritter

1) Introduction

In mathematical programming the relationship between a primal minimization problem
and the associated dual maximization problem plays an important role. In particular, if
an optimal solution to either problem is known, an optimal solution to the other problem
can easily be obtained. Most algorithms for solving the primal problem generate a
sequence of primal feasible solutions with decreasing objective function values. On the
other hand a dual method determines a sequence of dual feasible solutions with increasing
values of the primal objective function. Only the optimal solution is primal feasible.

For quadratic programming problems such a dual method is developed in this paper. 1In
the next section we introduce some definitions and preliminary results. Section 3
contains an outline of the algorithm and its properties. In the final section a detailed

description of the algorithm is given.

Spongsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2) Formulation of the Problem and Basic Results

~ We consider the problem

N min{e'x +‘% x'Cx | Ax < b} , (2.1)

it where ¢ and x are n-dimensional vectors, b is an m-dimensional vector and A 1is an

(m,n)-matrix. Thus n denotes the number of variables and m denotes the number of

"§
- inequality constraints.
" Throughout the paper we assume that the (n,n)-matrix C 4is symmetric and positive

definite. This implies that the obhjective function c'x + % x'Cx 1is strictly convex.
Therefore, (2.1) has a unique optimal solution if the set
R={x | ax < b}
{E of feasible solutions is non-empty. With
O(x) = ¢c'x + % x'Cx, A' = (a4,.00085), D' = (by,e.s,by)
i we can write (2.1) in the equivalent form
min{Q(x) | ajx € by, i=1,...,m,
To avoid some technical difficulties we assume that, for each x € R, the gradients of
the constraints active at x are linearly independent.
;' Problem (2.1) is sometimes called the primal problem and associated with the
E following maximization problem which is said to be the dual problem
max{-b'u -%x'CX | cx + A'u=-c, u » 0} . (2.2)

Here u 1is an m-dimensional vector. Thus the dual problem has n + m variables. The

v 4

main results connecting the two problems are the duality theorems which assert that if x

is an optimal solution to the primal problem, then there is u such that the pair (x,u)

P I
Yt

K

is an optimal solution to the dual problem and, vice versa if (x,8) is an optimal

(]

solution to the dual problem then X is an optimal solution to the primal problem (see

[yi)
3
Il'l“
CA

Sl

a,qg. [2]).

If O(x) is convex it is well-known (see e.g. [2]) that the following optimality

ronditions are necessary and sufficient for an optimal solution of (2.1).
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Optimality conditions

; is an optimal golution to (2.1) if and only if there is ; = (G,,...,&m)' such
that
1) C; + A'; = -, ; >0,
1) am<b,
1) u(ajx =b) =0, i=1,...m.
An ; is said to be a quasi-stationary point if there is some G such that (;,;)
satisfies the optimality conditions with the possible exception of the non-negativity

condition u 2 0,

Let X be a given stationary point and assume that

-

aix = by; i=1,.00,p aix < by {i=p+1,.0.,m.
Then
- i -
-C ~Cx = u,.a
Pt 171

. and for every
x€ {x | ajx =b;, 41=1,...,p}
we have
Q(x) = Q(;) - (c + c;)'(; - x) + % (; - x)'c(; - x)
Q) + 3 (x - x)'C(x = X)
This shows that ; is the unique optimal solution to the problem
min{Q(x) | ajx = by, 1 =1,...,p} .
Therefore, problem (2.1) has only finitely many quasi-stationary points and every

algorithm which generates a sequence of guasi-stationary points ;1,;2,... with the

property

) < Qlx))

; Qlx 5

j+1

e

will terminate with the optimal solution to (2.1) after a finite number of iterations.
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It does not seem to be practical to construct algorithms which obtain a new quasi-
stationary point at every iteration. However, a typical primal method for solving (2.1)
will generate a sequence of feasible solutions x5 with the following properties.

i) Every subsequence of n + 1 consecutive points XyoXypqrees X0 contains at

least one quasi-stationary point.
ii) 1f xj1 and sz are two quasi-stationary points with jq < ja, then

Q(xj
An example of such an algorithm is given in [1].

- -~ a A

An x is said to be a pseudo-stationary point if there is some u such that (x,u)

) < ) .
2 Q(xj1

satisfies the optimality conditions with the possible exception of some of the primal
feasibility conditions ajx € b;. In practice such a point is obtained if, after solving

(2.1), it is discovered that more constraints have to be added which render the present
optimal solution x infeasible.
Let x be a pseudo-stationary point and assume that

-

aix = bi' i=1,...,p, aix # by, i=p+1,ie0,m.

Then

~ P -
—c-Cx= ) ua, u >a, i=1t...p.
i=1

Thus it follows from the optimality conditions that ; is the unique optimal solution to
the problem

min{Q(x) | aix < by, i=1,00e,p} . (2.3)
This shows that (2.1) has only finitely many pseudo-stationary points.

Clearly, a pseudo-stationary point is the optimal solution to (2.1) if and only if it
is feasible. Let ; be the optimal solution to (2.1) and let ;j be any pseudo-
stationary point. Then it follows from (2.3) that either ; = ;j or Q(;) > Q(;j). Thus
any algorithm which generates a sequence of pseudo-stationary points ;1,;2,... with

C(; +1) > Q(; )
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will terminate after a finite number of iterations. As in the case of primal algorithms

A\

; it is not practical to insist that the algorithm obtains a new pseudo-stationary point at
every iteration. Instead, we will develop an algorithm which generates a sequence

{xj,uj} of dual feasible solutions with the following properties.

4 i) Every subsequence {xv'xv+1""'xv+n} contains at least one pseudo-stationary point.

1i) 1f xj1 and sz are two pseudo-stationary points with j4 < j,, then
(xg ) > Q(xs ) .

7 Qlxy, 3
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3) A General Outline of the Algorithm

Let X,

3 be a pseudo-stationary point and assume that

aixj =Dy, 1i=1,ce0,p

Then there are numbers “1j""'“pj such that

ij + § uj434 = =G, uyy 20
i=1
(3.1)
‘ixj = by, 1i=1,.00,p »
If xj satisfies the inequalities ajx < by for i =p+ 1,...,m, then it follows from
the optimality conditions that x4 is an optimal solution. Let k be any integer such
that
a*xj > b . (3.2)
First we will determine a pseudo-stationary point for which the kth constraint is
satisfied as an equality. There are two cases to be considered depending on whether a,
is linearly dependent on a1,...,ap.
Case 1: a, ¢ span{a1,...,ap}.
Then the equations ajx = by, 1 = 1,...,p, 1 = k are consistent and the problem
min{Q(x) | ajx = by, 41 =1,...,p, 1=k} (3.3)

has a unique optimal solution which we denote by Yye Furthermore, there are numbers

iy such that

P
Cyy + ig1 vijay + vgqag = = ,

aiyj = by, i=1,.e0,p, (3.4)
akry = b -
Setting By = X3 = Yjs Uy = 0,

6kj = Uy = iy and 6ij = Ujy = Viye i=1,...,p

we nbtain from (3.1) and (3.4) the equalities

[
|
|
|
|
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Cay + 121 513‘1 + ij“k =0 (3.5)
aisj =0, 1i=1,...,p (3.6)
a,'(s_., = a)'(xj - bk . (3-7)
Furthermore, let
Yy

o, = min{1, 22 | for all i with §,. > o} (3.8)

b] 611 i3

and set

xj+1 - Xj - Gjﬂj, “k,j+1 = ukj - Ojékj, ui'j+1 = uij - Ujsij, i=1,..,p.

Then

2
[+
Q(xj+1) - Q(Xj) - -Oj(c + ij)'sj + ‘2'1 giCsj

2
P o
=0y L uagalsy e T oicsy

02

-

2 siCsj .

Multiplying (3.5) by 8y we obtain
siCsj - -Skjaisj .
Since sjcsy > 0 and aﬁsj > 0 we have -ij >0 and
Uk, y41 = YUy < °j6kj > Yy 20 .
Thus, if °j = 1, it follows that Xy4pq = %y = 8y is a pseudo-stationary point with .
Q(x5.4) > O(xy) and afxyyq = by .
1t 9y < 1, let 9y = “lj/clj' say. Then uy 4.4 =0 and agxyyq > by.

Replacing Xy with X441 and deleting agx = bl from the set of active constraints we
can repeat the above steps to obtain

Xy42 = Xyeq = °j+1sj+1' “k,j+2 » 0, “i,j+2 20, i=1,,.0,p, L ¥ 2 .

If o = 1, then x is a pseudo-stationa point with
§41 j+2 ry

-7-




Q(Xj+2) > Q(Xj) and a,'(xj.,,z = bk .

If °j+1 < 1, then a,"xj,,z > by and Uy, 442 = 0 for at least one i = 1,...,p, 1 # 2.
Repeating these steps we obtain an xjw with 1 € p € n such that xj+p is a
pseudo-stationary point with
1 -
Q(xj,‘_p) > Q(Xj) and akxj,,_p = b . (3.9)

2: =X + o +
Case ay 124 (3] pap
Because a)'txj > by, (3.3) has no feasible solutions. If )‘i < 0 for all

i=1,...,p, then :he given problem (2.1) has no feasible solutions as will be shown in

the proof of the theorem in the next section. If at least one Ai is positive, determine

o~ the smallest index v such that
[
o u
h-. u
» +j= min{—%i } for a11 i with A 2 o} 1.10)
v i

k and set
b - u. - us
:.__ ukjg_lk . uijguij-_lx Xi, i=1.ee,p
s v v
- Replacing (3.1) with

P - -

. + - .
Cxy + 1E1 Uggdy ¥ Upyd = c
i#v

aixj=bi, ia= 1,.--,[,, i#l
and (3.3) with
min{Q{(x) | ajx = by, i=1,..0,p, i=k, i#v}

we can proceed as in Case 1 to obtain a pseudo-stationary point x_ with the properties

j+p

(3.9).

e

'

The above description of the algorithm jndicates that all data required to perform

one iteration can be obtained by solving a system of linear equations of the form (3.5)-

(3.7). Depending on the number of active constraints the dimension of this system varies

na s,
N )

L

from n to 2n. 1In the following we will show that these data can also be derived from

an appropriate (n,n)-matrix associated with Xqe

P AR
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Let x4 be again a pseudo-stationary point with
aixj = bi' i=1,.00,p
and define
Ty = {x | ajx = o, i=1,.00,p}
Since the gradients of active constraints are assumed to be linearly independent the

subspace Tj has dimension n - p. Let ¢

p+1,40°*Cny be a bagis of conjugate |

directions for Tj. By this we mean the following.

1) Cp+1,jre++sCpy are linearly independent,

ii) €44 e Tj, i=p+1,e00,n,
iii) cijckj =0, {,k=p+ 1,...,n, §{ #Kk,

iv) cijCcij -1, i=p+ 1,iee,n .
Because C 1is positive definite it is not difficult to verify that such a basis for T
exists.

Now define the (n,n)-matrix Di as follows

D5 = (a,,...,ap, CCP+1’j,-o-,Can) .

Then D5 is non-singular and denoting the columns of 051 by °1j""'°nj we have

031 = (CqjsseesCpyr Cpaq,jreeeCpy)
where Cp+1,jree=eCpy are the vectors that form a basis of conjugate directions for Tye
Since ‘icij = 1 and ’ickj =0 for i,k = 1,.e4,p, 1 # k, it follows immediately
from (3.1) that
ujy = ‘clj(° + ij), L =1,0004p

Furthermore, a, € span{a1,...,ap} if and only if

aicij =0 for all i =p + 1,...,n .

First assume that LI TRRETL FL N are linearly independent and set

’

’

Tj = {x | ajx =0, 4i=1,.0.,p, 1=k} .

. . g
M A I
PR

In Step 2.1 of the algorithm given in the next section it is shown how a basisg of

conjugate directions Cp+2,4417°**+Cn, 441 for Tj can be derived from Cp+1,§7°**+Cnjy*

Setting

-9-
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- Dj“" = (a,,...,ap,ak, chzlj,,,,,...,Ccn'j”)
\:' we obtain

S -1

:‘~'; Dj*‘ = (c1’j+1,-..,cp+1’j+1, cp+1,j+1""'cn,j+1)

:% where Cp+2,3+17°°*Cn, 341 form a basis of conjugate directions for Tj'

= With

:_.-: Sj = (&]'(Xj - bk)cp+1’j+1 (3.11)

:g it follows from the definition of the inverse matrix that

g

“~

?f aisj =0, i1i=1...,p, and ‘i’j = aixj - by .
< Furthermore, c1,j+1Csj =0, i=p+ 2,...,n shows that

}} Csy € span{a1,...,ap,ak}

}} Therefore, the solution of the equations (3.5)~(3.7) is given by (3.11) and

-\-' _ -
- 855 = =cl,3+1085r 1= lieeeips 1=k .

= Let °j be as defined by (3.8) and set xj+1 = xj - cjsj. 1f aj =1, X441 is a

- pseudo-stationary point. If cj <1, let oj = “lj/slj and define
- Ty = x| afx =0, 4=1,00,p 1=k 171}

~ Then the vectors
[ .

. c _ °z,i+1

£,542 S ————

] ’ [

o ve}, 3415, 341
v ©i,j+2 = Ci,j41» 1 =P+ 2,..00n

_s: form a basis of conjugate directions for Tj+1. Assuming for simplicity that £ =p - 1

- we have
l.): ,
4 .‘: D.i+2 = (a1,...,ap_1, Ccl’j+2,ak,CCp+2'j+2,---,Ccn’j+2)

o

and

.
.
L

-1
Dj+2 = (01'j+2,-o-,cn’j+2) .

If a e span{a1,...,ap}, then Tj = T4 With v as defined by (3.10) we have

.
L A |

m .

Dia1 = (aqreccsdy qrdodypqeeeesdpiCopnLy guqreeesCop yuy) .

and

» 3
N .-'.'

.
LR 4
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D311 fC1, 3410040, 341) .
where
©{,4+41 ™ Ci5 for i=p+ 1,.00,n
The matrix DJ,; is then determined as in the previous case.
All information needed in an iteration of the algorithm can be derived from the
matrix DS‘. The matrix Di is only used to illustrate the definition of D;1. In order
to differentiate the columns of D;1 which form a basis for Tj from those which

correspond to gradients of active constraints we associate with D}‘

an index set
J(xj) = {°1j""'°nj} .
For each |, aij e {0,1,...,m} and uij = 0 if and only if €44 [} Tj‘ Furthermore,

°1j =k >0 if and only if a, is in the ith column of Di-

r .
0 alit

o)
N
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4) Detailed Description of the Algorithm

As initial data, the algorithm requires a pseudo-stationary point (xg,ug) and the
associated matrix 081 = (°10""'°n0) and index set J(xg) = {010,...,an°} as defined
in the previous section. There are two important cases in which these data are easily
available. First, if C 1is a diagonal matrix, then x5 can be the unconstrained
minimizer of Q(x). All columns of DB‘ are conjugate directions. Second, xg, ug, DB‘,
and J(xg) could be obtained by applying the algorithm given in [1] to the original
problem which then was augmented by additional constraints not satisfied by xg.

A general iteration of the algorithm is as follows.

Step 1
Determine the smallest k such that
aixj - by = max{aixj - by | £ = 1,000,m}

If aixj - b €0, stop with the optimal solution x4t otherwise go to Step 2.1.

Step 2.1
If uij >0 for all i = 1,...,n, go to Step 2.2; otherwise compute

zy = ’icij for all i with aij =0 ,
Determine the smallest Vv such that

|zv| = max{|zil | for all i with a , = 0} .

13

If z 0, set
€4,9+1 ™ Ci4 for all i with a5y = 0
and go to Step 2.2. If z, #0, set z' = (24,...,2,) with 2z, = 0 for all i with

Qij >0, § = 1 if z, 0 and § = -1 if z,, > 0. Compute

Slzle =~ 2z

AR —————— .
N TTPIPET (Wyreeeown)® o

where e, is the v-th unit vector. Set
y = 03 'w

and

-12-




€j,j+1 ™ Cij = 2wyy¥

-

for all 1 with uij = 0. Set cvj = cv'j+1 and go to Step 2.3.

Step 2.2
Compute
Al - aﬁcij for all { with qij >0 .
If Ai <0 for all i, stop with the message that problem (2.1) has no feasible

solution; otherwise determine the smallest v such that

u u
e minf=2 | forall i with o _ >0 and A >0} .
X, X 13 1

replace

-

Set c = C

vj vy’

u
i
uvj with X
v
and
u
s §
uij with uij X\, xi

for all 1 ¥ v with °1j > 0. Go to Step 2.3.

Step 2.3
Compute
c = S
v, i+1 o
2% vy
and

C1’j+1 = cij - (‘icij)cv,j+1

for all i ¥ v with aij > 0. Set

-1
Dj+1 = (c1'j+1,ounpcn'j+1)' J(Xj+1) - {01'j+1ronolan'j+1} ’

where a =k and a = q

v,3+1 1,35+1 for all i # v, Go to Step 3.

i)

AR
\ &
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Step 3

”~
e

Compute

AN

8y = (aixj - bk)cv,j+1

LR

and

' ,.
Ay,

sa s

Gij - 'ci,j+1c°j for all i with «

-

1j>0-

i €0 for all i, set oj = ©; otherwise determine the smallest £ such that

]
o

If

RN XA

) %14
oy = 3-1 = min{7z=< | for all i with a >0 and 8,

> 0} .
13 15 13

g
.

b

[ d

Set

¥ vTrs
[
PR L)

*
g, = min{1,oj}, x =x =~ 0.8, ,

3 3 373
Uy, 441 T U4 for all i with a4 = o,

j+1

Caks

i

u1’j+1 = uij - stij for all i with Gij >0 .

.
[ ]

Replace j with j + 1. If aj_1 = 1, go to Step 1. If oj_1 < 1, go to Step 4.

Step 4

EAP A A

.-

Compute

.

(=]
c - —t3
s r
£,3+1 /—-—c' o
237743

« s fa v,

-"'." l.

i,§41 = €45 = (ci,j+1c°ij)c£,j+1 for all i # & with 3y >0,

O

i, 541 = iy for all i with aij =0 .

n'l"l. > B

Pl

Set

1 e
'.'.)‘

-1
Dj+1 = (°1,j+1""'cn,j+1)' J(Xj+1) = (61'3*1:”-:““'},1} ’

where =0 and a = q

14 for all i # £, Replace j with j + 1 and go to

%, 341 1,341

L LN

Step 3.

1

The following lemma establishes the properties of the matrices Di and D; which

quarantee the finite termination of the algorithm.
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Lemma

Define the set I such that j € I if and only if the algorithm uses Step 1 at
the Jj-th iteration. Let
-1 - -
Dj (c1j'OCl,cnj), J(Xj) (aij,...,unj), Xj, and Uj
be as defined by the algorithm and denote the columns of Di by d1j""'dnj' Then, for
every j € I, we have the following properties

1) dij - Cclj for all 1 with “ij =0 ,

i1) dij - aaij for all i with aij >0,

iii) a for all 1 with a 3 >0,

a13*3 ~ Paty 4
iv) =(c + CXj) = Di“j with ugy = 0 for all i with °ij = 0 and Yy > 0

for all i with aij > 0.

Proof:

! and

For 3 = 0 the statements of the lemma follow from the definition of Dy
Ji{xg). Let j €1 and assume that i)-iv) are true. First we consider the case that
“ij = 0 for at least one 1 and that z, as defined in Step 2.1, is different from
zero., let w be as defined in Step 2.1 of the algorithm and set
H=1-2w'.

Then H is a Householder-matrix with the property (see e.g. (3])

Hz = GIzIe“ . (4.1)
Furthermore, let
anq -1 - -
Dj = Dj H= (c1j""’cnj) .

Then

j""'dnj) .

‘s D'H = 3
Dj= DH = (4,

By definition,

cij - cij - 2vip;'w = ij - 2w1y, i=1,...,n.

Since wy =2z; =0 for all { with aij > 0, we have

s

cij = ci4 for all 1 with oij >0

and

-15-
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cij = 4,441 for all i with a,, =0 ,

i3
where the vectors <y §+1 are as defined by Step 2.1 of the algorithm. Similarly,
’

a

d = d = a for all 1 with «

13 7 %9 T %aij 1320

and

dij = dij - 2w1D3w for all i with aij = 0

Since dy4 = Ccyy for all i with a,, =0 and w; =0 for all i with a4 >0, it

i3
follows that, for all i with aij =0,
- . _ -1
dij Ccij 2W1CDj w

= Ccij - 2w1CY

= C(Cij - 2w1Y)
= ccij .
This shows that D ' xj, and uj = uy have the properties i)-iv). Furthermore let

‘k ‘k' where a.kespan{d } all 4 with a,, > 0} and ;kGSpan{dijl all

i3

i with uij = 0}. Then

v o 311 . - -
z aij and akcij 0 for all i with Qij 0 .

Therefore, it follows from (4.1) that

~| -1 [ = .
agb 5 akD H z'H = 6Izle ’
which implies that
- 0 for all i ¥ v with a,, =0
%y - N
13 §1z0 for i=v,
If Vv is determined by Step 2.2, we set 13-1 = DS‘. In either case we have
- 3
A - -
akcij 0 for all i # v with aij 0. (4.2)

Let Di*‘ be obtained from D; by replacing the v-th column with aye Then it follows

from (4.2) that the columns 4,441 of D}l, are as defined in Step 2.1 and 2.2 of the

algorithm. If we set u, = uy when Vv is determined by Step 2.1 and equal to the vector

3
defined in Step 2.2 otherwise, it is easy to verify that Di*" D511, Xy “j' and

a

J(xj*1) have properties i)-iv) with the exception that

9
8av,5+1%3 > Pay, 41
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j+1e1 if and

Now let °j’ X440 and LTS be as determined by Step 3. Then

only if ¢, = 1 in which case ‘uv 341 j+1 - bav,j+1' i.e. properties i)-iv) hold. 1If

3

°j <1, let Dj+2 be the matrix obtained from Di+1 by replacing the £&-th column

) ] =
with °z,j+1/’°z,j+1°°z,j+1' Since cl,j+1c°1,j+1 for all i with LTI 0, the
columns of D;22 are as determined by Step 4. Furthermore, the 2~-th component of

uj4q 1is zero. Thus it follows again that °5+2' D;:Z' J(xj+2), Xy4qe and Uyeq have

properties i)-iv) with the exception that
L]
8av, §+2%5+1 > Pay,qe2 *
This completes the proof of the lemma.

The main properties of the algorithm are summarized in the following theorem.

Theorem
Let xg,X4q,... be the vectors determined by the algorithm.
i) For every 3Jj the set
{xj'xj+1""’xj+n}
contains at least one pseudo-stationary point.
i) 1f xj1 and sz are two pseudo-stationary points with Jj4 < J3+ then
Q(sz) > Q(xj’) .
iii1) The algorithm terminates after a finite number of iterations with either an optimal
solution or the information that the given problem has no feasible solutions.
Proof:
i) Let the set I be as defined in the lemma. Then it follows that, for every j € I,
x4 is a pseudo-stationary point. At every iteration j with 3j ¢ I, the number
of positive elements in the set J(xj) decreases by 1. Hence, there are at most

n consecutive iterations such that 3 ¢ I.

11) with sy = (apxy - bk’°v,j+1 and 513 = -c], y4+1C84 we have

Csj == F 61j’ai,j+1 R (4.3)

such that a > 0., Multiplying (4.3) by

where the summation is over all 1 1,941

sj we obtain

-17-
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{. sJCsj ijaksj ij(akxj bk) .
G -
" Thus ij <0 and Uy ge1 " Uy ij > 0. Furthermore,
.
\:
o o2
Ca - - = - + -— gt
:: Q(x asj) Q(xj) g(c ij)sj + 3 stsj ‘
02
e =0 1 u,.a 8, + —— giCs
. ot §ay et 301%y T2 5508
o2
T, = ¢ —_—t
u:‘ auvjaksj + 2 sJCsj
N >0 for ¢ >0 .
*.
.~ iii) If the algorithm terminates with x5 in Step 1, then xj €R and j € I. Thus it
i- follows from the lemma that X4 is a pseudo-stationary point. Because x4 e R the
‘}f optimality conditions are satisfied and x4 is indeed an optimal solution. Suppose
< the algorithm terminates with Step 2.2. Then
¥
™ a=zka.withx<0.
k
_‘: aijpo L o3 i
-
’ = , -
. Let x be such that aaijx < baij for all 1 with “ij > 0. Set s Xy Xe
- Then a',.s »0 for all i with a,. > 0. Thus
. aij 13
- alx = afl{xy - 8) = agxs = } Aa' .8 > aixs > b .
Lt k k k k
) 37 aipe bodd 3
’;
This shows that R = g. Since there are only finitely many pseudo-stationary
)& points, it follows from part ii) of the theorem that the algorithm terminates after
a
y a finite number of iterations.
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